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It is shown that the use of the SchroÈ dinger equation may lead to the ab initio

determination of the positions of the nuclei in a crystal, given a limited number

of diffracted-beam intensities. In particular, it is shown that an extremely

simpli®ed SchroÈ dinger equation in physical momentum space provides a

suf®ciently sound theoretical basis to develop an algorithm using diffraction

data alone. This algorithm has been tested with a known 41 atom crystalline

structure (not including hydrogen atoms) in space group P1. The extracted

information is suf®cient to determine the positions of all atoms. In addition,

theoretical developments relevant to the connection between momentum space

in quantum mechanics and diffraction theory have been formulated.

1. Introduction and goals

The time-independent SchroÈ dinger equation is the usual basis

of the ab initio determination of the multidimensional elec-

tronic wave function, given the nuclei positions. X-rays are

scattered by electrons and the X-ray diffraction experiment on

crystals provides a set of measured intensities of diffracted

beams. The aim of this paper is to show that the use of the

SchroÈ dinger equation alone may also lead to the ab initio

determination of the positions of the nuclei in a crystal, given a

limited number of diffracted-beam intensities. In other words,

we endeavour to solve a simpli®ed SchroÈdinger equation given

a limited set of experimental diffraction intensities, instead of

the classical problem of solving this equation given the nuclei

positions.1 The solution will be achieved within a natural

framework for this problem: the SchroÈ dinger equation in

physical momentum space, i.e. the space obtained by a Fourier

transform (FT) operation on the usual position space. It is to

be noted that for the present purpose we only wish suf®cient

precision to obtain from the electron-density map, i.e.

� � | |2, approximate coordinates for the atoms of the crystal

structure.

The determination of the atomic (nuclei) positions from the

sole information of intensities of diffracted beams is known in

crystallography as the `solution of the phase problem'. This is

the problem of determining the phases of the Fourier coef®-

cients of the periodic electron-density function [equation (1)

in x2], where only the moduli of these coef®cients (structure

factors) are provided by the diffraction experiment. The

solution of the phase problem has been achieved by direct

methods (DM) (Hauptman & Karle, 1953). The ®rst noncen-

trosymmetric structure was solved by Karle & Karle (1964).

Recently, a combination of phase-relation formulas with

direct-space algorithms permits the determination of mole-

cular structures with over 1000 atoms (Weeks et al., 1994;

Sheldrick, 1998; Burla et al., 2000). We stress the fact that the

present work does not use any one of the DM theoretical

results. However, useful techniques such as the multisolution

idea (Germain & Woolfson, 1968), which have been devel-

oped in the DM context, are also useful in the present ab initio

determination of the nuclei positions by the SchroÈ dinger

equation.

2. Theoretical background

The present work is based upon an extreme simpli®cation of

the quantum-mechanical (QM) wave function. We consider

that all electrons are independent of each other (no inter-

electronic Coulomb repulsion), i.e. the potential function

contains only the nuclei±electron attractive terms. Such an

oversimpli®cation is of course inappropriate for a satisfactory

QM description of the wave function but it proves to be

suf®cient for achieving an acceptable approximation for the

determination of the nuclei positions.

Thus, the electron density will be approximated by a one-

electron quantum-mechanical wave function  (r), with the

obvious notations (FT for the Fourier transform):

��r� � j �r�j2 ( FT) F�p� � '�p� 
 '��p�; �1�

where 
 stands for the convolution operation and

 �r� ( FT) '�p�
��r� ( FT) F�p�:

1 Note that, if the phases of an in®nite number of diffracted beams were
known, this information would be strictly equivalent to the knowledge of the
positions of the nuclei.
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The moduli of the F(p) values are obtained by the experi-

mental diffraction intensities. The question arises then

whether it is possible to obtain from fundamental quantum

mechanics the unknown phases of F(p) or, equivalently, the

electron-density function �(r), and ®nally the atomic positions.

We show below that the electronic SchroÈ dinger equation in

Fourier (momentum) space provides a basis for such a

determination (atomic units are used):

Direct space Momentum space

ÿ� �r�=2� V�r� �r� � " �r� ( FT) p2'�p�=2�W�p� 
 '�p� � "'�p�
�2�

with V�r� ( FT)W�p�:
For a periodic crystalline structure, the convolution integral

is replaced by a discrete sum and equation (2) in momentum

space is rearranged as equation (5).

Notation: We denote below by H (or K) a reciprocal-lattice

vector such that H � p=2� � ha� � kb� � lc�, where h, k, l are

integers and a�, b�, c� are the reciprocal unit-cell parameters.

For simplicity, p2, H2, K2 represent the squares of the

respective vector lengths. The difference in the de®nition of

FT in physics and mathematics (including crystallography)

pertains to the factor 2� (see Appendix A). For convenience,

we use throughout this paper the physics de®nition for

continuous variables and the mathematical-crystallographic

de®nition for discrete variables.

Thus, for p � 2�H, we have:

'�p� � '�2�H� � �2��ÿ3=2	�H�
W�p� � W�2�H� � �2��ÿ3=2 ~W�H�:

The next key remark is that the Fourier coef®cients W(p) �
W(2�H) of the potential function V(r) are simply related to

the normalized structure factors E(H) de®ned in crystal-

lography by:

E�H� �
X

j

Zj exp�2�iH � rj�
s2

and s2 �
X

j

Z2
j

 !1=2

;

j � 1; . . . ;N; �3�
where N is the number of atoms in the unit cell and Zj the

atomic number of the jth atom.

We ®nd that:

W�p� � W�2�H� � �2��ÿ3=2 ~W�H� � ÿ �2��ÿ3=2 s2

�H2
E�H�:
�4�

Equation (4) is the key relation linking the quantum-

mechanical potential function W(2�H) to the complex

amplitudes E(H) of the diffracted beams by a crystal. Thus, (2)

becomes, now with the discrete notation:

�2�H2 ÿ "�	�H� � s2

�

X
K

E�Hÿ K�	�K�
jHÿ Kj2 : �5�

The electron energy " is a negative quantity for bound states

so that the ®rst factor in the left part of (5) is always positive,

and we can divide by it. This fact allows us to consider an

iterative procedure to solve (5).

Furthermore, hydrogenoid atoms with spherical symmetry

and quasi-point electron density (core electrons) are a satis-

factory model for the present purpose. Thus, F(p) / E(H) and

(1) is written as:

E�H� � c
P
K

	�K�	��KÿH�; �1a�

where c is a scale factor easily determined. In any case, the

passage from F 's to E's is a well documented issue in DM

bibliography.

The pair of equations (5) and (1a) form a system of self-

consistent equations to be solved by iteration, which is a usual

procedure in quantum mechanics.

It is important to emphasize that the SchroÈ dinger equation

written as (5a) has a form similar to that of a basic equation

obtained by direct methods in crystallography (Karle &

Hauptman, 1950; Hauptman & Karle, 1953; Sayre, 1952),

equation (6):

	�H� � s2

��2�2H2 ÿ "�
X

K

E�Hÿ K�	�K�
jHÿ Kj2

Schr �odinger equation �5a�
E�H� �

X
K

w�H;K�E�K�E�Hÿ K�

direct methods; �6�
where w(H, K) is a positive weighting factor evaluated by DM

theory and complemented by semi-empirical considerations.

The physical meaning of this similarity is not discussed in

this paper. We point out, however, that the SchroÈ dinger

equation is a postulate of quantum mechanics, while direct

methods are mathematical theories based on physical

assumptions such as the non-negativity of the electron-density

function and the `atomicity' property of real structures.

For the particular case of `equal atoms' (N identical atoms

with atomic number Z) and a wave function further simpli®ed

in the linear combination of atomic orbitals (LCAO)

approximation (Berthier et al., 1997), the similarity becomes a

quasi-identity with the `weighting' factor:

w�H;K� � ZN1=2

��2�2H2 ÿ "�
f ato�K�

f ato�H�jHÿ Kj2 ; �6a�

where the function f ato is the FT of atomic orbitals assumed

identical for all atoms entering the LCAO expression with the

same coef®cients.

Figure 1
Flow chart of the algorithm.



3. Practical procedures and testing of the algorithm

The simpli®ed one-electron SchroÈ dinger equation (5) is the

basis formula of the procedure described in Fig. 1. Initial trial

values for phases are introduced for a small subset of E's.

Initial values for 	's are arbitrarily assigned to the whole set

of 	(K). Then the values 	(H) obtained from (5) are recycled

through two routes: directly by introducing them in the factor

	(K) of (5) in the next cycle; indirectly by using them in the

right-hand member of (1a) to produce new values of E(H). In

addition, in each cycle the total energy " is recalculated and

subsequently introduced in the left member of (5) by:

" �
X

H

2�2H2	�H�	��H� ÿ
X

H

X
K

s2

�

E�Hÿ K�	�K�
jHÿ Kj2 	��H�:

An important remark should be made at this point. The

moduli of the complex numbers E have been obtained from

the diffraction experiment and are kept constant throughout

the procedure. Only the phases �(H) of E(H) are changed in

each cycle. In addition, new values of E's are obtained from

(1a) beyond the initial trial subset. The phases �(H) obtained

from (1a) are introduced in the next cycle as phases �(H ÿ K)

of E(H ÿ K) in the left-hand member of (5):

E�Hÿ K� � jEobs�Hÿ K�j exp�i��Hÿ K��: �5b�
The above algorithm has been tested with a known 41 atom

crystalline structure,2 not including hydrogen atoms, which

crystallizes in the space group P1. We have used phases of

three re¯ections ®xing the origin in P1 and we have run the

program with 64 initial trial values (this number stems from

the usual algorithms where the phases of, for instance, three

E's are set arbitrarily at ��=4; �3�=4).

In the general case of an unknown structure, each of the

®nal results is to be tested by using discriminating criteria

(Bethanis, Tzamalis, Hountas, Mishnev & Tsoucaris, 2000;

Bethanis, Tzamalis, Hountas, Tsoucaris et al., 2000) that will be

discussed thoroughly in a forthcoming publication. Here we

only mention that these criteria are based on the knowledge of

the crystallographic symmetry, which however is not intro-

duced in the calculations. Thus, progressive recovery of the

symmetry in the course of iterations for each trial represents a

criterion of correctness of the structure. In the present case

with symmetry P1, the symmetry criterion could be replaced

by a criterion pertaining to the Friedel phase relations. This

has not been performed here and we have simply used the

mean error between the calculated and the correct phases

denoted by MPE (mean phase error). Table 1 shows the MPE

for the ®ve best rated solutions (out of 43). In the context of

the present paper, it is important to show that only the ®rst-

ranked solution (MPE � 23.4�) does lead to approximately

correct values of phases of about 400 structure factors E(H);

then common knowledge in crystallography ensures that this

information is suf®cient to determine the positions of all atoms

in this 41 atom structure. As can be seen from Fig. 2, where for

simplicity only one of the three molecules of the structure is

drawn, the corresponding electron density for this solution

reveals all the atomic positions.

It is to be noted that the idea of combining QM methods

with experimental X-ray diffraction data has been used by

Karle et al. (1998), in a context different from our present ab

initio (in the crystallographic sense) problem. In this context,

the use of crystallographic information facilitates quantum-

mechanical calculations. There are circumstances such as

structural complexity or alterations in structure from crystal-

lization that are not conducive to structure determination by

quantum-mechanical means. Combining the two ®elds of

research allows additional information, e.g. electron densities,

various energies and reaction paths, to be determined.

We state below two further theoretical developments rele-

vant to the connection between momentum space in QM and

diffraction theory.

4. Further theoretical developments

4.1. Phase invariance in the exact n-dimensional SchroÈdinger
equation

For a bound state, the set of 	 values that satis®es the

extremely simpli®ed one-electron SchroÈ dinger equation (2)

also satis®es the following relation:

Phase of 	 � Phase of �W 
	�
, Phase of FT � �r�� � Phase of FT �V�r� �r��: �7�

It is worth noting that this momentum-space `phase invari-

ance' relation remains true for the exact multidimensional

wave function, solution of the complete electronic SchroÈdinger

equation including the inter-electronic repulsion.

The general equation (8) has been used in a previous

publication by Navaza & Tsoucaris (1981) (N-T), aiming at the

Hartree±Fock solution in momentum space of a system of n

electrons moving in the potential ®eld due to N nuclei:

Xn

i�1

p2
i

2
ÿ "

 !
'�p1; . . . ; pn� ÿ

1

2�2

Z
dq

s2E�q�
q2

Xn

i�1

'�p1; . . . ; pi ÿ q; pn�

� 1

4�2

Z
dq

1

q2

Xn

i;j�1
i6�j

'�p1; . . . ; pi ÿ q; . . . ; pj � q; . . . ; pn� � 0; �8�

where the ith coordinate pi is changed into pi ÿ q and the jth

coordinate into pj � q.
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Table 1
List of ®ve trials of the multisolution procedure.

All others of the 64 multisolution results have MPE higher than 88�. It is clear
that we have a unique solution for trial no. 22.

Multisolution trial no. No. of calculated phases MPE (�)

22 413 23.4
32 428 72.6
24 424 75.8
20 325 83.2
49 408 87.4

2 4,5-Bis(methylthio)-1,3-dithiol-2-ylium±bis(TCNQ), C29H15N8S4 (V.
Psycharis, D. Mentzafos & A. Terzis, unpublished data)
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The interpretation of (8) proposed by N-T is that the

nuclear ®eld potential transfers a momentum q to each elec-

tron in turn, thus changing the total momentum of the elec-

tronic system. The inter-electronic interaction does not change

the total momentum but produces an inter-electronic

momentum transfer between each pair of electrons in turn.

We stress now the fact that the phase invariance in the one-

electron equation (7) also holds for the general exact SchroÈ -

dinger equation (8) where the negative total energy " < 0 for

bound states implies that:Pn
i�1

�p2
i =2ÿ "�> 0:

Thus, we state that the phases of the eigenfunctions

'(p1, p2, . . . , pn) of the exact electronic SchroÈ dinger equation

in momentum space for bound states are invariant under the

convolution operator W(p)
. Rephrasing in n-dimensional

coordinated space:

The phase of the Fourier transform of an eigenfunction

 (r1, r2, . . . , rn) of the exact electronic SchroÈdinger equation is,

for bound states, invariant under the potential multiplication

operator:

Phase of FT � �r1; r2; . . . ; rn��
� Phase of FT �V�r1; r2; . . . ; rn� �r1; r2; . . . ; rn��: �9�

4.2. Expectation values in QM and crystallography

The quantity that expresses the physical `observable'

potential energy is obtained as an expectation value of the

QM operator V(r).

ÿepot � ÿh jVj i � ÿ
R
 ��r�V�r� �r� dr: �10�

For a bound state, this quantity is positive, so the counterpart

in momentum space,

ÿepot � ÿ �2��ÿ3=2
R

dp '��p� R dq W�pÿ q�'�q�; �11�
corresponds to a positive-de®nite Hermitian form.

In crystallographic notation, this means thatX
H

X
K

	��H�E�Hÿ K�	�K�
jHÿ Kj2 � 0: �11a�

This relation recalls a well known fact in DM (Karle &

Hauptman, 1950), i.e. the `predominant positivity' of the

`origin invariants' (quantities that remain invariant under

translation of the origin in direct space):

Re�E��H�E�Hÿ K�E�K��: �11b�
However, it is useful to emphasize that the probability concept

used in DM is different from that of (10). In QM, the funda-

mental probability concept concerns | (r)|2. On the other

hand, in crystallography the joint probability p(E1, E2, . . . )

has been determined from ®rst principles (Hauptman & Karle,

1953).

The connection between DM and quantum mechanics has

been the subject of recent publications (Berthier et al., 1996,

1997). This connection is obvious in the LCAO approximation

leading to (6a). The evaluation of the expected value for an

individual term (11b) is one of the basic results in DM theory.

We note that the QM theory still provides a general indication

concerning the predominance of positive terms (11a) and

(11b).

5. Conclusions

In this work, we have used the SchroÈ dinger equation in an

unusual context: instead of the nuclei positions given a priori,

we introduce into the algorithm a limited set of diffraction

intensities. We have provided evidence that the iterative

solution of the SchroÈ dinger equation leads to an approximate

wave function.

Moreover, this wave function is precisely located in the

crystal lattice. Thus, the evaluation of the square of the wave

function in position space, i.e. the electron-density function,

leads to precise positions of all atoms within the unit cell.

Clearly, this achievement provides a solution of the phase

problem in crystallography, i.e. determination of the atomic

positions from a limited set of diffracted intensities. It is

interesting to note that the contribution in the fundamental

equation (5) of terms that decay rapidly with increasing |HÿK|

(because of the term 1=|H ÿ K|2) has not been an obstacle for

achieving the determination of the electron density at high

resolution.

In the present paper, we have used a 41 atom structure to

illustrate this new theoretical approach. Although modern

calculation methods permit the determination of crystal

structures with a number of atoms of the order of a thousand,

the above structure is not a trivial case. The remarkable fact is

that an extremely simpli®ed SchroÈdinger equation has provided

a suf®ciently sound theoretical basis to develop an algorithm

using diffraction data alone. Furthermore, the system of

equations (1a) and (5) has enough power to address the

practical problem stated in the introductory section, i.e. the ab

Figure 2
Electron-density map of one of the three molecules contained in the
crystalline structure. The calculated electron-density function satisfactory
determines all the atomic positions.



initio determination of atomic positions from the diffraction

data alone.

Further developments include the combination of the

present reciprocal- (momentum-) space algorithm with well

known crystallographic procedures in direct space (Shake-

and-Bake: Weeks et al., 1994; Half-Baked: Sheldrick, 1998).

The QM algorithm can be improved by using a Yukawa

potential instead of the Coulomb potential. This can greatly

enhance the high-resolution (large |H ÿ K|) terms in (5) and it

is expected to be better computationally adapted to atomic

resolution problems.

APPENDIX A

We consider the following de®nitions of the Fourier transform

(FT) of  (r):

FT commonly used in physics:

'�p� � FT� �r�� � �2��ÿ3=2
R
 �r� exp�ip � r� dr; �12�

and FT used in mathematics and crystallography:

	�H� � FT� �r�� � R  �r� exp�2�iH � r� dr: �13�
Equations (12) and (13) are related by setting p � 2�H:

'�p� � '�2�H� � �2��ÿ3=2	�H�:
The electron±nuclei attractive potential for N atoms of

atomic number Zj at positions rj is (in atomic units):

V�r� � ÿP
j

Zjjrÿ rjjÿ1: �14�

Then the FT of V(r) is given respectively by the following

expressions:

W�p� � ÿ 2

�

� �1=2X
j

Zj exp�ip � rj�
p2

from �12� �15�

~W�H� � ÿ 1

�

X
j

Zj exp�2�iH � rj�
H2

from �13�; �16�

which are related by

W�p� � W�2�H� � �2��ÿ3=2 ~W�H�:

By comparing (16) with (3), we see that

~W�H�=E�H� � ÿs2=�H2

and (4) follows.

A remarkable fact is that the potential term in momentum

space bears only one singularity, and it is `factorized' at the

origin of momentum space as 1=H2, instead of presenting N

singularities in direct space at each nucleus located at rj.
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